
10 STRATEGIES FOR
MANAGING SOFTWARE

DEVELOPERS
DOUGLAS ONYANGO - FOUNDER, DERON LIMITED
Phone: +256 776 716 138 Email: ondouglas @deronltd.com

ABOUT ME

Founder of Deron Limited, a Ugandan-based ICT and
Innovations company that provides automation and
digitization solutions for several clients. These include the
British High Commission, UNDP, PACE, Malaria Consortium,
Save The Children, and various Ugandan ministries such as
Health, Agriculture, Gender, Labor, and Social Development.

Most notably, he is recently leading the development of the
Parish Development Model Information System (PDMIS) for
the Ministry of ICT and National Guidance.

3

DERON LIMITED is an ICT innovations and
data management company that specializes in
providing solutions that power businesses
around East Africa.

We specialize in solutions for both
government and private sector in finance,
health, agriculture, social development, law
enforcement and education.

3. DERON LIMITED
A local ICT and innovations company

KEY SECTORS:

HEALTH | AGRICULTURE |
FINANCE | EDUCATION
SOCIAL DEVELOPMENT

SATISFIED CLIENTS

10 STRATEGIES FOR MANAGING DEVELOPERS

1. Hire Slow:

2. Understand Your Developer

3. Learn Some Tech

4. Set up Standards/Rules/Guidelines

5. Clear Communication

6. Empower Your Developers

7. Build your team

8. Access to Your Code/IP

9. Eliminate Single Points of Failure

10.Fire Quick

1. HIRE SLOW
Why Hire Slow:
'Hire Slow’ allows for a thorough evaluation of a candidate’s
technical abilities, work ethic, and cultural fit, increasing chances
for a better candidate.

How to 'Hire Slow':
To implement 'Hire Slow,' use detailed job descriptions and a
multi-stage hiring process. This includes technical assessments,
behavioral interviews, and involving various team members in
the evaluation. Reference checks are a must.

Note:
Aim for a thorough yet efficient process that makes informed
decisions promptly, avoiding unnecessary delays in team growth
and project progress.

2. Understand Your Developer

Why Understand Your Developer:
Knowing your developers' motivations and capabilities enables
personalized management that enhances productivity and job
satisfaction.

How to Understand Your Developer:
Engage in regular one-on-one meetings, conduct surveys, and
foster an environment where feedback is welcomed and acted
upon.

Note:
Balance understanding with privacy; maintain professional
boundaries while showing genuine interest in your developers'
well-being.

3. LEARN SOME TECH

Why Learn Some Tech: Basic technical knowledge helps you
communicate effectively with your team and make informed
decisions. In addition to basic knowledge on technology
learn project management, business analysis, software
testing and version control etc.

How to Learn Some Tech: Take introductory courses, attend
workshops, and spend time with your development team to
gain insights into their daily challenges.

Note: Avoid overstepping into technical micromanagement;
use your knowledge to support your team, not to dictate

4. SET UP STANDARDS AND GUIDELINES

Why Set Up Standards/Rules/Guidelines: Clear
standards ensure consistency and quality, providing a
common framework for all team members to follow.
E.g coding standards, testing procedure, SOPs, release
and deployment proceedure

How to Set Up Standards/Rules/Guidelines: Develop
these collaboratively with your team, document them
clearly, and ensure they are accessible and regularly
updated.

Note: Ensure rules are flexible enough to
accommodate exceptions and encourage innovation
within the framework.

5. CLEAR COMMUNICATION

Why Clear Communication: Effective communication
prevents misunderstandings and aligns team efforts
with project objectives.

How to Clear Communication: Utilize detailed project
briefs, regular updates, and open channels for
dialogue across all levels of the team.

Note: Remember that communication is a two-way
street; be as open to listening as you are to sharing
information.

6. EMPOWER YOUR DEVELOPERS

Why Empower Your Developers: Empowerment leads to greater
ownership, innovation, and accountability among team
members.

How to Empower Your Developers: Delegate meaningful tasks,
provide the necessary resources for autonomy, and trust in their
expertise to make decisions.

Note: Empowerment without support can lead to stress; ensure
you provide guidance and a safety net for risks.

7. BUILD YOUR TEAM

Why Build Your Team: Developers like challenges so
create an environment that they can grow and thrive
in. Encourage and facilitate ongoing learning
opportunities for your team. Promote activities that
enhance team cohesion and morale.

How to Build Your Team: Invest in team-building
activities, promote a culture of mutual respect, and
celebrate team achievements.

Note: Team building should not force artificial
relationships; respect the individuality and boundaries
of team members.

7. HAVE ACCESS TO YOUR CODE/IP

Why Learn Some Tech: You must always have access to the
code your team has developed. Access can be done via
GITHUB or any other tool, but it helps in the unlikely event
that the developer is unavailable to continue working.

How to Learn Some Tech: Use tools like GITHUB, et al to
encourage sharing. This will mean you will always have
access to all the knowledge products generated should
you ever need to use another developer

Note: Code access does not mean micro-managing; trust
your developers' expertise and use access for oversight,
not constant interference.

9. ELIMINATE SINGLE POINTS OF FAILURE

Why Eliminate Single Points of Failure: Reducing reliance on any
one resources increases the resilience and reliability of your
project.

How to Eliminate Single Points of Failure: Implement redundant
systems, cross-train team members, and create comprehensive
documentation.

Note: Avoid creating unnecessary complexity when building
redundancies; simplicity can often be the key to reliability.

10. FIRE FAST

Why Fire Quick: Be quick to notice and recognize poor
performance or a lack of your core values and behaviour. If
they really do have the right attitude, then take the time to
train the skill otherwise, let them go.

How to Fire Quick: Establish clear performance metrics,
provide timely feedback, and if necessary, take decisive
action to part ways.

Note: Firing should be a last resort, after support, coaching,
and improvement efforts have been exhausted.

FEEDBACK?
THANK YOU

